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METHOD FOUR CAICULATION OF PRESSURE DISTRIBUTIONS ON
THIN CONICAL BCODIES OF ARBITRARY CROSS SECTION
IN SUPERSONIC STREAM

By Stephen H. Maslen

SUMMARY

An epproximatcem method is presented for calculating the pressure
distribution on conlcal bodies of noncircular cross section in a super-
sonic flow field. By a superposition of elementary conical flows due
to line sources, the flow about an arbitrary cone may be described.
Illustrations of the pressure distribution about several shapes are
. included to demonstrate the method. The problem of such a body at

angle of attack may also be solved by the same method, as well as the
problem of yawed flight at angle of attack.

L
INTRODUCTION
Linearized methods have been applied to determine solutions of
the supersonic flow field about both solid and opsn-nosed bodies of
- revolution. (See references 1 ‘to 4.) The methods of reference 1 have
been extended herein to produce a linearized solution for cones of arbi-
trary cross section, such as might serve as forebodies of nonsymmetrical
fuselages. The solution is based on the use of a combination of line
sources inclined arbitrarily to the flow direction. If the proper sources
are chosen, any conical body shape can be described and the resulting
surface pressures can be calculated.
The method presented herein was devised during the fall of 1947
at the NACA Cleveland laboratory.
SYMBOLS
The following symbols are uged in this anslysis:
4 c pressure coefficient
»
c,d semi-axes of ellipse

"
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constant proportional to source strength
free-stream Mach number
glope of line source with respect to flow direction

component, normal to flow direction, of distance from point
‘on line source to arbitrary point in flow field

free-gtream velocity

component of total velocity normal to body at surface

radial (cylindricql coordinate) perturbation-velocity component
axial perturbation-velocity component

tangential (cylindrical coordinate) perturbation velocity component
cylindrical coordinates

cotangent of Mach angle, M2 -1 .

angular position of line source, measured from € ='n/2 plane

angle between radial velocity and normel to body, measured in
x = constant plane

angle whose tangent is ratio of radial to axial coordinates
of point on body surface, tan™t r/x

axial coordinate of line source

gource strength ver unit of axial length
perturbation-velocity potential

angle between normal to body surface and normal to ray,

which intersects axis of body

GENNERAL ANALYSIS

In the solution of the pressure distribution over a body, & method

of successive approximation is used. A perturbation-velocity potential

based on linearized flow is found from which the three velocity components
maey be determined. If these velocities satisfy the boundary conditions

for the desired body, the potential describes the flow about the actual

body.

The pressure coefficient may then be found from
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cp = - ZUX/U (1)

The perturbation-velocity potential may not be assumed completely
arbitrarily, but is subject to several general limitations and to some
barticular ones imposed by the body. The particular limitations form
& guide in the selection of the potential. The two general limitations
are: (1) the potential must satisfy the. Prandtl-Glauert equationy and
(2) under the conditions of linearized flow, the disturbance velocities
should diseppear at the Mach cone.

The Prandtl-Glauert equation for compressible frictionless potential
flow, in linearized form and cylindrical coordinates is

62
(Mz-l) é_%_lj_ré@_—%—%:o (2)
dx r dr ar r do

A line source OT of strength per unit length f(f), 1ying
in the plene ¢ = [K“/Z) + 5 ], whose slope with respect to the flow
direction is m, is shown in figure 1. The potential at some point P
due to such a disturbance is

x-Rj3
° 1 £ (£) at
= 4
0 ‘\](E-X)Z-BZRZ
where R is, from the geometry of figure 1, defined by

R? = p2 4 (mﬁ)2 - 2mfr sin (6 - ) (4)

(3)

This potential can readily be shown by direct substitution to satisefy
equation (2). ‘

Combining equations (3) and (4) and rearranging the terms result
in
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From figure 2(a),

U=O=[U cosv-(U+U)sinv}cos1ll—U sin V¥
n r X e
or

tan
Up - Uy 2% - (U4 Uy) tan v (10)

But, also from figure 2(a),

tan ¥V = tan A cos V (11)

and, with reference to figure 2(b),

_ dr
tan A = —r (12)

where r = f(6) is the equation of the body cross section. If equa-
tions (10) to (12) are combined, the boundary condition for the flow
is obtained:

UI\-

K-
15

Up = (U+Uy) ¢ (13)

The second general condition for linearized conical flow, stated
previously, is that the perturbation velocities approach zero as the
Mach cone is approached, or as rB/x approaches unity. This con-
dition is exactly true for equations (7) to (9).

The potential found from the single-line source that has been
considered until now is insufficient to calculate the flow about an
arbitrary body. Because the potential due to one source satisfies
the general limitations of the problem, however, a series of poten-
tials due to a number of sources of various strengths and positions
can be so added together that the resulting flow satisfies the bound-
ary conditions for the particular body in question and thus can be
assumed to be the deslred flow.

Four parameters are considered in selecting the source pattern:

the angular position &, the slope of each source relative to the
flow direction m, +the number of sources, and the strength of each.

APPLICATION QF METHCD

Because the perturbation velocities are functions of only r/x
and 6, the resulting body contours are conicel and only one body
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section that is in a plane normal to the free-streem-flow direction
need be considered. The problem is thereby reduced to two dimensions
and the body is completely described by one plane, as in figure 3.
The line sources thus appear in such a figure simply as points.

With the use of several sources of varying strength and position,
the boundary condition, defined by equation (13), can be made to yield
the flow about the desired body shape. Although such a solution is
found largely by trial and error, some general rules for the selection
of sources yielding a specified body shape can be established. The

four parameters previously mentioned, that is, the angular posi-
tion 5, the slope of the line sources m, the number of sources, and

the source strength, must be kept in mind.

1. The axes of symmetry of the body section shogld be noted,
inasmuch as the sources must be symmetrically arranged relative to
the same axes.

2. The source nearest to a peak in the section should be nearer
to that voint than to any other point on the section because the per-
turbation velocities due to the body are a maximum at the peak and,
inasmich as velocities due to the source increase as the distance
from the source decreases, the point closest to the source has the
highest velocity. The distance from a point on the body to the
nearest source must therefore be equal to or less than the radius
of curvature of the body section at that point.

5. If the body is elongated, a series of sources in a line are
required. The slenderer the section, the more sources are needed
to prevent contour irregularitieg in the body described by the
resulting solution (eguation (13)). Also, for a given body of this
type, as the gection narrows the sources should be closer together.

4, In general, the larger the number of sources used, the more
closely the linearized [low- obtained fits the body in gquestion and
the fewer are the number of trisl solutions required to obtain a
satisfactory answer. ZIXach such solution, however, is more laborious
than one using Tewer sources.

To summarize, the angular position of the sources is determined
by rules 1 and 2, the distance from the axis by 1, 2, and 3, and the
number of sources by 1 and 3. Rule 4 serves as an.over-all guide.
Only X, which is proportional to the source strengths, remains to
be determined. TFrom the symmetry condition, sources that are in the
same position relative to the axes of symmetry have the same strength.
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With a known number of different source strengths, equation (13) may

be solved for the strengths at the same number of polints on the surface
by using equations (7) to (9). The potential is now completely defined.
This potential should then be checked in equation (13) at several points
on the body to determine whether the flow due to the source potentlal
is the same as that over the actual body. It should be noted that

the strength of a source may be negative.

The case of flow at angle of attack can be solved by considering,
at zero angle, a body whose cross section consists of sectlons of the
actual body taken normal to the free stream instead of normal to the
axis. The x-axis of the new body is then parallel to the flow direc-
tion. For a small angle of attack, the two cross sections probably
differ little, but their positions relative to the coordinate axes
differ. The case of yawed flight at angle of attack can be solved
in a similar menmer (fig. 4). '

Examples

Several examples follow to illustrate the general rules that
have been outlined:

Example I. - Assume that an elliptic section (fig. 3) is desired.
From the symmetry condition, two sources are assumed as a first approx-
imation to such a section. These sources are of equal strength, equi-
distant from the x-axis, and at 5 = 0 and ® = n. The velocities
are found from equations (7) to (9).

The equatlion of an ellipse is

2 dzc2
r =

2 2 2 2
d sin 0+ c cos 6
wvhere ¢ and d are major and minor semi-axes, respectively.

ld
From this relation, - ag may be obtained:

: (2.2
% dr _ sin 6 cos 6°(c®-d%) (14)

6 d2 sin2 e + 02 cos2 e

Yhen a Mach number and values for c¢ and 4, are glven, a vosition
for the sources (that is, a value of m) is selected. From the
second general rule, c¢ -m of figure 3 should be somewhat less than
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the radius of curvature at c, =n/2. With this guide, a value of m
can be assumed., From the coordinates of one point on the surface K/U
can be found by substitutionof equations (7) to (9) and (14) in equa-
tion (13). Several other points should then be checked in the boundary
relation. If agreement is poor, the sources should be moved and per-
haps others added. When a potential is obtained that satisfies equa-
tion (13) closely enough, the pressure coefficient can then be found
from equation (1). :

An example of the results of such a calculation is shown 1n
figure 3. The body shape obtained by using the value of X previ-
ously determined and by solving equation (13) for r/x as a function
of 6 is shown together with the desired shape. In this example, where
the contour is almost circular, the pressure distribution approximately
follows the body shape. The deviation of the calculated section from
the desired ellipse could be considerably decreased by placing the two
sources farther apart and adding a third source at the origin.

If the flow about an ellipse having a larger ratio of major to
minor axes than was used in figure 3 is desired, the perturbation-velocity
potential for two sources gives poor results. The effect of varying X
while holding m constant is shown in figure 5. A similar result is
obtained by holding the length of one of the axes constant and varying
the length of the other by changing m, while holding the soqurce strength
constant. In order to obtain a satisfactory solution for an ellipse having
the ratio of the axes much greater than that in figure 3, & series of sources
can be used.

Example II. - Assume that an ellivpse having the ratio of major to
minor axes equal to 3 is desired. (See fig. 6.) Obviously, for symmetry,
a nmumber of source palrs, as used in the previous example, plus perhaps
a single source at the origin, will give the desired solution. The position
of source 1 in figure 6 may be assumed from the condition that its distance
from the peak must be approximately the radius of curvature at the peak.
The distance between sources 1 and 2 is taken as about equal to the distance
from source 2 to the nearest point cn the body. The remaining sources may
be similarly chosen. Thils procedure gives a system of three source pairs
whose velocities are found from equations (7) to (9), and a single source
whose velocities are found from equations (7a) and (8a), which are simply
the velocities found when m 1s zero. When equation (13) is solved for
this system of sources at four points on the body, Ki, » Kz, and Ky
(fig. 6) are determined and the pressure coefficient can be found from

equation (1).

The desired ellipse and the contour calculated by the use of seven
gources are shown in figure 6 together with the pressure distribution
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corresponding to the source configuration. In this example the section
deviates greatly from a circle and the pressure distribution no longer
follows the body- contour. The maximum and minimum values of the pres-
sure coefficient, however, still occur at the meximum and minimum points,
respectively, on the section.

Ixample ITI. - Now assume that the pressure distribution 1s desired
over a body whose cross section is a triangle modified by rounding the
vertices (fig. 7). From symmetry considerations, three sources of equal
strength should be assumed at & = 0, 2x/3, and 4@/3. These sources
should be placed at approximately the center of curvature of the vertices.
Because the body is epproximetely circular, a source that is not of the
seme strength as the others should be placed at the origin.

The velocity components can then be calculated from equations (7)
to (¢) and the strength of the sources can be established by solving
equation (13) at two points.

Such a surface, with the corresponding pressure distribution, is
illustrated in figure 7. As in the first example, the pressure distri-
bution follows the trends of the body shape.

It must be remembered that the examples given are meant to illustrate
the method of solution of such bodies rather than to show actual pressure
distributions, although the trends indicated should be correct. The bodies
chosen are probably not slender enough for great accuracy in a linearized

solution.

SUMMARY OF ANALYSIS

An approximateam method has been presented for calculating the
pressure distribution on conical bodies of arbitrary cross section in
supersonic flow. By a combination of elementary conicel flows due to
line sources, the flow about a slender arbitrary cone can be described.
Four parameters are considered in determining such a system of sources:
the spacing of the sources around an axis lying in the flow direction,
the slope relative to the flow, the number of sources, and their strength.
The first three parameters can be determined by several conditions.
FPirst, the same symmetries will hold for the sources as for the body.
Second, the distance from a peak to a source will be less than or equal
to the radius of curvature at that psint. Third, for an elongated body,
the slenderer the section, the closer together the sources must be.
Finally, the greater the number of sources used, the more accurately
the desired body can be approximated. The solution will be more labo-
rious, however, if more sources are used. The fourth parameter, source
strength, may be found by direct calculation.
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The case of a conical body at angle of attack and of yawed flight
can be solved by the same method.

Flight Propulsion Research Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, April 27, 1948.
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Figure 1, — Geometric relations defining one arbitrary line
source and its relation to a point P in flow field,
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Body at zero
angle of attack
and zero yaw

\
Body at angle',
of attack

“Yawed body at
angle of attack

.

Flgure 4.- Comparison of body at zero angle of attack
and zero yaw wilth same body at angle of attack and 1in

yawed flight,
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Increasing ratio

K/U O Source position

.02
.0175

of major to
minor axes C

Figure 5. - Surfaces obtained with sources of varying strength
at (a, ¥ n/2), m = 0.20.










